Examen final, deuxième session, juin 2010

Durée : 2 heures.

Aucun document n'est autorisé.

Les calculatrices et les téléphones portables sont interdits.

Exercice 1. On considère la fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} (x^2 + y^2)^2 \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si} \quad (x,y) \neq (0,0), \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

- a) Étudier la continuité de f sur \mathbb{R}^2 .
- b) Calculer les dérivées partielles de f en chaque point où elles existent.
- c) Étudier la continuité des dérivées partielles sur leur domaine d'existence.
- d) Étudier la différentiabilité de f en (0,0).

Exercice 2. On considère la fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $f(x,y) = y^3 + x^2 - 4xy + 3y^2$.

- a) Déterminer les points $(x_0, y_0) \in \mathbb{R}^2$ tels que $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$.
- b) Montrer que pour chaque y fixé, la fonction $x \mapsto f(x,y)$ atteint son minimum en x=2y.
- c) Étudier le sens de variation de la fonction $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ définie par $\varphi(y) = f(2y, y)$.
- d) Montrer que pour tout y > 0 et pour tout $x \in \mathbb{R}$ on a $f(x,y) \ge f(\frac{4}{3}, \frac{2}{3})$.
- e) Montrer qu'il existe une suite $((a_n, b_n))_{n\geq 1}$ et une suite $((x_n, y_n))_{n\geq 1}$ telles que $(a_n, b_n) \longrightarrow (0, 0)$, $(x_n, y_n) \longrightarrow (0, 0)$ et

$$f(a_n, b_n) < f(0, 0) < f(x_n, y_n)$$
 pour tout n.

Le point (0,0) est-il ou non un point de minimum ou de maximum local de f?

Exercice 3. a) Soit $\Omega = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x + 2y \le 2\}$. Calculer

$$\iint_{\Omega} (x+2y)e^{-\frac{x}{2}}e^y \, dx dy.$$

b) Soit $D = \{(x, y) \in \mathbb{R}^2 \mid \pi^2 < x^2 + y^2 \le 4\pi^2\}$. Calculer

$$\iint_D \sin\sqrt{x^2 + y^2} \, dx dy.$$

(Ind.: on peut effectuer un changement de variables et passer en cordonnees polaires.)

Exercice 4. On considère la courbe $\vec{\gamma}:[0,2\pi]\longrightarrow\mathbb{R}^2$ définie par $\vec{\gamma}(t)=(\cos t,\sin t)$. On note Γ l'image de $\vec{\gamma}$.

- a) Calculer la longueur de la courbe $\vec{\gamma}$.
- b) Soit $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, g(x,y) = 3x + y. Calculer $\int_{\Gamma} g \, d\gamma$. c) On considère le champ de vecteurs $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, F(x,y) = (-y,x). Calculer $\int_{\Gamma} \langle \vec{F}, d\vec{\gamma} \rangle$.