Examen final, session de janvier 2010

Durée : 2 heures.

Aucun document n'est autorisé.

Les calculatrices et les téléphones portables sont interdits.

Exercice 1. On considère la fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} xy \ln(x^2 + y^2) & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- a) Étudier la continuité de f sur \mathbb{R}^2 .
- b) Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- c) Pour $(h_1, h_2) \in \mathbb{R}^2$, calculer $d_{(2,0)}f(h_1, h_2)$.

Exercice 2. a) Trouver toutes les fonctions f de classe C^1 sur \mathbb{R}^2 (s'il y en a!) telles que

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 5y + e^y$$
 et $\frac{\partial f}{\partial y}(x,y) = 5x + xe^y$.

- b) Déterminer les fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^2 qui vérifient $\frac{\partial^2 f}{\partial x^2} = 0$ sur \mathbb{R}^2 .
- c) Soit $D =]0, \infty[\times \mathbb{R}$. On définit u(x,y) = x et $v(x,y) = \frac{y}{x}$. Soit g une fonction de classe C^1 sur D. On pose f(x,y) = g(u(x,y),v(x,y)). Déterminer $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en fonction de dérivées partielles de g.
 - d) Déterminer toutes les fonctions f de classe C^1 sur D qui vérifient

$$\frac{\partial f}{\partial x} + \frac{y}{x} \cdot \frac{\partial f}{\partial y} = 0 \qquad \text{sur } D.$$

(Ind.: Chercher f sous la forme f(x,y) = g(u(x,y),v(x,y)) et utiliser la question précédente.)

Exercice 3. a) Soit $T = \{(x, y, z) \in \mathbb{R}^3 \mid x \ge 0, y \ge 0, z \ge 0, x + 2y + 3z \le 1\}$. Calculer:

$$\iiint_T \frac{dx \, dy \, dz}{(1+x+2y+3z)^3}.$$

b) Soit $D = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 9\}$. Calculer

$$\iint_D e^{x^2 + y^2} \, dx dy.$$

(Ind.: On peut utiliser un changement de variable et passer en coordonnées polaires.)

Exercice 4. On considère la courbe $\vec{\gamma}:[0,\frac{\pi}{2}]\longrightarrow \mathbb{R}^2,\ \vec{\gamma}(t)=(\cos^3t,\sin^3t)$.

- a) Calculer la longueur de la courbe $\vec{\gamma}$.
- b) Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, f(x,y) = x. Calculer $\int_{\Gamma} f \, d\gamma$.
- c) On considère le champ de vecteurs $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, F(x,y) = (x,5y). Calculer $\int_{\Gamma} \langle \vec{F}, d\vec{\gamma} \rangle$.